Do you want BuboFlash to help you learning these things? Or do you want to add or correct something? Click here to log in or create user.

Question

Beware, no hypothesis in a deletion should introduce an object. «If, ... , then the center of P is not trivial» is hard to understand, whereus «Let P be a group. If ..., then the center of P is non trivial» is more clear.

Answer

a classical name

Question

Beware, no hypothesis in a deletion should introduce an object. «If, ... , then the center of P is not trivial» is hard to understand, whereus «Let P be a group. If ..., then the center of P is non trivial» is more clear.

Answer

?

Question

Beware, no hypothesis in a deletion should introduce an object. «If, ... , then the center of P is not trivial» is hard to understand, whereus «Let P be a group. If ..., then the center of P is non trivial» is more clear.

Answer

a classical name

If you want to change selection, open original toplevel document below and click on "Move attachment"

#### Parent (intermediate) annotation

**Open it**

Theorem A theorem usually admits two deletions. Hypothesis and conclusion. It sometime admits a third deletion if the theorem has a classical name. For example you may want to remember that the theorem stating «In a right triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares

#### Original toplevel document

**Unknown title**

ted «Aff(X)». What you really want is to recall that «the set of vectors of the form Sum of x_ir_i, with x_i\in X and r_i in the field, where the sum of the r_i is 1» is «the affine hull of X». <span>Theorem A theorem usually admits two deletions. Hypothesis and conclusion. It sometime admits a third deletion if the theorem has a classical name. For example you may want to remember that the theorem stating «In a right triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides. » is called «the Pythagorean theorem». Beware, no hypothesis in a deletion should introduce an object. «If, ... , then the center of P is not trivial» is hard to understand, whereus «Let P be a group. If ..., then the center of P is non trivial» is more clear. Hypothesis A first important thing is to always write all hypothesis. Sometime, some hypothesis are given in the beginning of a chapter and are assumed to be true in the whole chapter.

Theorem A theorem usually admits two deletions. Hypothesis and conclusion. It sometime admits a third deletion if the theorem has a classical name. For example you may want to remember that the theorem stating «In a right triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares

ted «Aff(X)». What you really want is to recall that «the set of vectors of the form Sum of x_ir_i, with x_i\in X and r_i in the field, where the sum of the r_i is 1» is «the affine hull of X». <span>Theorem A theorem usually admits two deletions. Hypothesis and conclusion. It sometime admits a third deletion if the theorem has a classical name. For example you may want to remember that the theorem stating «In a right triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides. » is called «the Pythagorean theorem». Beware, no hypothesis in a deletion should introduce an object. «If, ... , then the center of P is not trivial» is hard to understand, whereus «Let P be a group. If ..., then the center of P is non trivial» is more clear. Hypothesis A first important thing is to always write all hypothesis. Sometime, some hypothesis are given in the beginning of a chapter and are assumed to be true in the whole chapter.

status | not learned | measured difficulty | 37% [default] | last interval [days] | |||
---|---|---|---|---|---|---|---|

repetition number in this series | 0 | memorised on | scheduled repetition | ||||

scheduled repetition interval | last repetition or drill |

Do you want to join discussion? Click here to log in or create user.